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1. INTRODUCTION

This is the third in a series of papers intended to develop the theory of the
umbral calculus. The purpose of this paper is to generalize the theory
presented in the first paper. Familiarity with the first two papers is not
essential. However, some knowledge of Sections 1-5 of the first paper
(hereinafter denoted by UCI) is recommended since, due to space
considerations, we have been somewhat terse here whenever the line of
reasoning is virtually identical with that in UCI. For instance, we have
chosen to omit some of the simpler proofs of the peripheral results whenever
these may be taken from UCI mutatis mutandis. Also, we have been
somewhat shorter with the examples, discussing in some detail the cases of
Hermite, Laguerre, Gegenbauer, and the g-case but only mentioning briefly
the Chebyshev and Jacobi cases.

The underlying theme of the first paper is that the special polynomial
sequences which we have termed Sheffer sequences possess a unified theory.
From this theory many seemingly unrelated results in the classical literature
emerge as special cases of a general result. Moreover, the umbral calculus
provides a cohesive approach to the study of further properties of these
sequences, as well as bringing to light some new sequences which are
strongly related to the important classical ones.
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In this paper we replace the algebra P of polynomials in x by the field A
of formal Laurent series in x of the form

px) = Z bjxj
j=-0o0

for any integer m. The algebra # of formal power series in ¢, which gave us
our representation of linear functionals and linear operators on P, is replaced
by the field I of formal Laurent series in ¢ of the form

(o @)
f="73 a,
k=n

for any integer n. Then I' is used to represent all the continuous linear
functionals and some continuous linear operators on A in much the same
manner as in UCL In fact, we still have

(| x")y=c,8,,

and

but now n and k range over all integers.
To make a long story short, the entire theory developed in UCI can be
adapted to this new setting. Each Sheffer sequence of polynomials

n
Su(x)= 3 a,,x"
k=0

gives rise to a sequence of Laurent series

n
M =~ k
N

Salx) =

where n ranges over all integers and for which a, , = 4, , whenever n, k > 0.

In some special cases, and only for n < 0, the sequence §,(x) has been
studied under the name factor sequence. Several simple examples have
appeared in the classical literature but it was not until the last few years that
the factor sequence counterparts of, say, the Hermite and Laguerre
polynomials, have emerged (see [2]). However, except for some brief work
by this author the full sequence §,(x) has not been studied.
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2. FORMAL LAURENT SERIES

In this section we shall set down a few basic definitions concerning formal
Laurent series. Let K be a field of characteristic zero. Let I" be the field of
formal Laurent series over K of the form

=Y @1

k=m

where m is any integer. Addition and multiplication in I" are purely formal.
The degree of f(t) is the smallest integer k for which a, # 0. It is readily seen
that deg /() g(r) = deg f(¢) + deg g(¢). We shall denote the multiplicative
inverse of f(¢) in I'by /' ~'(¢) or 1/f(¢). It is clear that deg /' () = —deg f(¢).
We shall write £ ~'(£)* as f(£) =%

Let g,(¢) be a sequence in I" for which lim, , _ deg g,(¢) = co. Then for any
sequence of constants g, the sum

[e 0]

E a, g {t)

k=m

is a well-defined element of I". In case deg g,(¢) = k the sequence g,(¢) forms
a pseudobasis for I". In other words, for any f(¢) in I there exists a unique
sequence of constants a, and integer m for which

[ee]

)= N a,g,0).

k=m

If deg g(r) = 1 and f(¢) has the form (2.1), then the composition
jee]
fg)= Y a0
k=m

is a well-defined element of I. A series f(¢) has a compositional inverse,
denoted by f(¢), and satisfying f(f(t))= f(f(1))=¢, if and only if
deg f(t) = 1. We call any series f(¢) with deg f(t) =1 a delta series.

It will be convenient to define a notion of convergence in I'". The sequence
Ja(t) converges to O if lim,_ degf(t)=o00. In case f(t)=0 we set
deg f(t) = oo. If £, () converges to O we write f,(f) — 0. The sequence f,(¢)
converges to f(t) if f,(t) — f(t) - 0.

A linear operator T on I is continuous if and only if Tf,(t) - O whenever
f.(t) = 0. In particular, a linear functional L is continuous if and only if
Lf,(¢t) is eventually equal to O whenever f,(f) - 0.

In case deg f,(t) = n, where n ranges over all integers then a continuous
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linear operator T on I is uniquely defined by the values 7f,(¢). Moreover,
these values may be assigned arbitrarily provided Tf,(f) —» 0 as n— oo.
Let A be the field of formal Laurent series over K of the form

n

px)= Y bx

pa— J
j=-o

for any integer n. Addition and multiplication are formal and the degree of
p(x) is the largest integer j for which b;# 0. If p;(x) is a sequence in A for
which lim,, , deg p,(x) = —oco and if b, is a sequence of constants, then

Y bipx)

i

is a well-defined element of A.

We shall say that the sequence p,(x) in A converges to O if lim, .
deg p,(x) = —oo. Here if p(x)=0 we set deg p(x)= —oco. In this case we
write p,(x) - 0. The sequence p,(x) converges to p(x) if p,(x) — p(x) - 0.

A linear operator T on A is continuous if Tp,(x)— 0 whenever p,(x)— 0.
A linear functional L is therefore continuous if and only if Lp,(x) is even-
tually O whenever p,(x)— 0.

If deg p,(x) = n for all integers n, then p,(x) is a pseudobasis for A4 and a
continuous linear operator T on A is uniquely defined by the values 7p,(x).
Moreover, these values may be assigned arbitrarily provided Tp,(x)— 0 as
n— —oo. We shall use this fact repeatedly.

3. LINEAR FUNCTIONALS

Let A* be the vector space of all continuous linear functionals on 4. We
use the notation (L | p(x)) for the action of L in A* on p(x) in A.
Let c, be a fixed sequence of nonzero constants. If f(¢) in I" has the form

*,
f(t) = L aktk’
k—m
then we define the continuous linear functional f(¢) on A by
(O x")=c,a, (3-1)

for all integers n, where a, =0 if n < m. In view of the remarks at the end of
Section 2, since deg x” =n and c,a,— 0 as n—» —oo we conclude that (3.1)
defines a unique element of A*.
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Notice that (3.1) gives
<tk ‘ xn> = cnén.k

for all integers n and k.

We have used the same notation f(¢) for a formal Laurent series and a
continuous linear functional on A. No confusion should arise since
J(t) = g(¢) as formal Laurent series if and only if f(f) = g(¢) as continuous
linear functionals.

Any continuous linear functional L on A has the property that
(L|x")— 0 as n—> —oo. In other words there exists an integer n,, depending
on L, for which n < n, implies (L | x") =0. Now consider the series

O (L|x*
L= S XD
K—ng Ci

Then
K@ x")=(L[x")

for all integers n. Therefore, since both L and f,(¢f) are continuous we
conclude that L = f;(¢) as linear functionals. The upshot is that the map
w:L > f,(¢) is a vector space isomorphism from the vector space A* onto
the field I. As is usual in the umbral calculus, we shall obscure this
isomorphism and think of A* as being identical with I. Hence A* is a field.
Let us give some basic facts.

ProrosiTiON 3.1.  [f deg f(x) > deg p(x), then

S| p(x))=0.
PROPOSITION 3.2. Let deg f,(t) = k and deg p,(x) = j. Then

n

(Y an| T bpw)

k=m j=—o0
= E .\_ akb/‘(fk(t)!pj(x)>
k—m j —oo
=N N ab i) pix).
k=m j=m

ProroSITION 3.3. For f(t)in I

NRUOIES

k=m Ck

J=

’

where m = deg f(¢).
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PropPoSITION 3.4. For f(t) and g(t) in I

n—s

() gy | xmy= Y —=

k=m CkCn_k

SO X g x5,
where m = deg f(¢) and s = deg g(¢).

ProPOSITION 3.5. If p(x) is in A, then

p(x): \”‘ ij

j=-w <

where n = deg p(x).

PrROPOSITION 3.6. If deg f,{t)=k and {(f,(t)| p(x)) =0 for all integers
k, then p(x)=0.

ProposITION 3.7. If deg p,(x)=n and {f(t)| p,(x)) =0 for all integers
n, then f(t)=0.

If y is a constant and m is an integer we define the evaluation series (or
evaluation functional) of degree m by

o k
()= N 2k,

k=m Ck

Then

Eym®)]| X"y =" if n>m,
=0 if n<m.

ProposITION 3.8. Let p(x) and q(x) be in A. Then p(x)=q(x) if and
only if e, () p(x)=¢, () g(x) for all y in K and all integers m.

Proof. Let p(x)=3""__ a;x’. Then

n

Em()| POy = N 2Ly,
J=m =J
Thus if (g, ,(t)| p(x))=0 for all y in K we deduce that a;=0 for j=n,
n - l,..., m. Since this holds for all integers m we deduce that p(x)=0. An
appeal to linearity proves the result.
When we are considering a particular delta series in /" as a linear
functional we shall refer to it as a delta functional.
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4, LINEAR OPERATORS

If £(¢) in I" has the form
e ¢]
f=Y a.t
k=m

we define the continuous linear operator f(¢) on I" by

oo c n-—m c
no__ h n n—k __ N n k
fyxt=Yy ax"F= N Zag xk 4.1)
k=m “n—k k=—o0 Ck
In particular,
c
thn n xn—k

Cnfk

for all integers »n and k. Notice that we use juxtaposition for the action of a
linear operator.

We use the same notation f(¢) for a formal Laurent series, a linear
functional and a linear operator. Again it is easy to see that f(¢) = g(¢) as
formal Laurent series if and only if f(¢+)= g(#) as continuous linear
operators.

It is straightforward to verify that

S0 g) p(x)] = [f(1) g()] p(x)
= &(0) S(0)] p(x)
= g/ () p(x)]
for all f(r) and g(¢) in I" and p(x) in A.
Notice that by Proposition 3.3 Eq. (4.1) becomes

S@x"= N
k=—oc CiCn—sk

Cn

SO x"4) x5 (4.2)

THEOREM 4.1. For any f(t) and g(t) in I we have

(1) g0)] p(x)) = (f(0) | g(t) p(x))
Sfor all p(x) in A.

Proof. The continuity of f(¢) and g(¢) as linear functionals and linear
operators allows us to prove this by considering only the case p(x) = x". But
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then replacing f(f) by g(f) in (4.2) and applying the linear functional f(7)
gives

Cu

GOl e x= N

C{OIESIVIGI B
k=—o0 CaCn—k

Finally, from Proposition 3.4 and degree considerations we obtain the result.

When we are considering a particular delta series as a linear operator we
shall use the term delta operator.

It is not hard to see that not all continuous linear operators on A take the
form f(¢) in I. We shall postpone the characterization of all such operators
until Theorem 5.5 when we can provide a more natural proof.

5. SHEFFER SEQUENCES

By a sequence p,(x) in A we shall mean that »n ranges over a/l integers and
deg p,(x)=n.

THEOREM 5.1. Let f(t) be a delta series and let deg g(¢) =0. Then the
identity

() SO [ 54(x)) = €0, 4 CRY)

valid for all integers n and k, determines a unique sequence of Laurent series
inA.

Proof. The uniqueness follows from Proposition 3.6. For the existence
suppose s,(x)=3"__ b,;x’ and g(t) f() =27, a, t', where a, ,#0.
Then (5.1) becomes

o n
Cilpi = <}: at' ' > b, .ixj>
i=k j=—x
n<
:> ay b, ic;

i=k

One may readily solve this triangular system of equations [for k=n,
n — 1,...| to obtain the coefficients b, ;.

The sequence s,(x) is the Sheffer sequence for the pair (g(r), f(¢)) and we
say s,(x) is Sheffer for (g(t), f(¢)). In case g(t)=1 we call the Sheffer
sequence for (1, f(¢)) the associated sequence for f(t).



536 STEVEN ROMAN

THEOREM 5.2 (the Expansion Theorem). Let s,(x) be Sheffer for
(g(t), f(t)). Then for any h(t) in A

ho— & HO1560)
> S

k=m

HONIOW
where m = deg h(r).

Proof.  Simply apply the right side to s,(x) to obtain A(z) s,(x). The result
follows by continuity.

COROLLARY 1. Let s,(x) be Sheffer for (g(t), f(1)). Then for any
Laurent series p(x) in A

= S (OISO p)
. C. -

J= =% J

(x)s
where n = deg p(x).

Proof.  Setting h(r) =€, (1) in the Expansion Theorem gives

b= N 156D
k=m Cy

g(n) f(Ok.

Applying this to p(x) gives

(om0 )= & SEOTOLEED 5,0

_ Lo (80 ()] p(x))
- <8y.m(t) . ‘\_‘ Ck

= -0

sk(x)>.

Since this holds for all y in K and all integers m the result follows from
Proposition 3.8.
The next result follows immediately from Theorems 4.1 and 5.1.

THEOREM 5.3.  The sequence s,(x) is Sheffer for (g(t), g(t)) if and only
if the sequence g(t) s,(x) is the associated sequence for f(1).

Theorem 5.3 says that each associated sequence generates a class of
Sheffer sequences, one for each g(¢) of degree 0.

We would like to characterize Sheffer sequences in terms of linear
operators in I
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THEOREM 5.4. A sequence p,(x) is the associated sequence for f(t) if and
only if
(l) <t0 | pn(x)> = Coén,os
(i) S(O) pu(x) = (cfcy 1) Pnsr(X).

for all integers n.

Proof. Suppose (f(£)*| p,(x))=c,0, . Then k =0 gives (i). For (ii) we
have

Cn
Cn—l

SOF SO o)y = €00 is s = <f(t)k

pH(X)>

and so in view of Proposition 3.6 we deduce (ii). Conversely, if (i) and (ii)
hold, then

Cn

SO | pal)) = <z°

pu i)

n—k

c'l
= CoOn_k.0
cn—k

=¢,0, %

and thus p,(x) is associated to f(¢).

Now we may easily derive a characterization of those continuous linear
operators on A of the form g(¢) inT.

THEOREM 5.5. A continuous linear operator U on A is of the form g(t) in
T if and only if there exists a delta operator f(t) for which

Uf () px) = f(t) Up(x)
Sfor all p(x) in A.

Proof. If U has the form g(¢), then U commutes with any delta operator.
Conversely, let p,(x) be the associated sequence for f(f). Then since
p,(x)—0 as n— —oo and since U is continuous we deduce the existence of
an integer m for which n < m implies (t° | Up,(x)) = 0. Let g(¢) be defined by

a0 & LU

k=m k

Jo".

Then
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& Up)

g(t) pu(x)= = ) SO p,(x)
= SO: n <t0 | Upi(x)) p,_(x)

k=m CkCn_k

_ v Tyt p, )

B kz_m Chk pnik(X)
SN AL X
N GO

= Up,(x).

The continuity of U and g(¢) complete the proof.

THEOREM 5.6. A sequence s, (x) is Sheffer for (g(t), f(¢)) for some g(f)
of degree O if and only if

S@) 8,0 = =5, _,(x) (5.2)
Jor all integers n.

Proof. Suppose s,(x) is Sheffer for (g(z), f(¢)). Then p,(x)= g(#) 5,(x) is
associated to f(¢) and so

S0 s,(x)=f(1) g '(1) pu(x)
=g () S() py(x)

Cn

=g (1) Pu (%)

Cn—l

Ch

= S, _1\X).
5 )

For the converse, let p,(x) be the associated sequence for f(¢) and let U be
the continuous linear operator on A defined by

Us,(x) = p,(x).

Then
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c"

Uf(1) s, (x) =

Usn— ](x)

Cn—l

Ch
- X
C,,,] pn—l( )

= /() p,(x)

= f(t) Us,(x)
and by Theorem 5.5 there exists g(¢) in I for which g(¢) s,(x) = p,(x). Thus
s.(x) 1s Sheffer for (g(¢), f(1)).

We are in a somewhat more enviable position here than we were in UCI
since I" is a field. For example, we have

THEOREM 5.7. The sequence s,(x) is Sheffer for (g(t), f()) for some
g(t) of degree O if and only if

@ s,(6) ==, 4(x)

Sfor all integers n and k.

THEOREM 5.8. Let s(x) be a series in A with deg s(x)=m. Let f(t) be a
delta series. Then there is a unique Sheffer sequence s,(x) with delta series
f(¢) satisfying s,(x) = s(x). In fact we have

$,(6) == (0" " 5().

We can characterize Sheffer sequences by an identity which generalizes
the binomial identity.

THEOREM 5.9 (the Sheffer Identity). A4 sequence s,(x) is Sheffer for the
pair (g(t), f(1)) for some g(t) if and only if

n

Eua) 8,0 = N — e ()] Py ) 543,

k=—o0 k¥n—k

where p,(x) is the associated sequence for f(t).

Proof. The Expansion Theorem for &, ((t) reads

o )= N S0P
k—0 X

S~
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Applying this to s,(x) and using Theorem 5.6 gives the Sheffer identity.
Conversely, let U be the continuous linear operator on A defined by
Us,(x) = p,(x). Then it is sufficient to show that U = h(¢) for some A(t) in I
Now

8_\’,0([) Usn(x) = 8,»‘,0(!) pn(x)

= N (g Pa ) )

k~—a CkCn-k

U N = (e (0] Pai(6)) 8i(%)

ko —oo k¥ n—k

= Ug, o(t) 5 ,,(x).

Thus U commutes with the delta operator ¢, o(t) —c; 't* and Theorem 5.5
concludes the proof.
Notice that if

n

p(x) = \‘ ajxja

pu—

J— -

then

(e P = N ay .

i=0
This leads us to define the polynomial part of p(x) as
n .
p(x)= L a;x’,
io

where of course if n < 0, then p(x)=0. The Sheffer identity may now be
written

n
‘ c .
6)*,0([) sn(x): .\_. - pn k(y)sk(x)'
k=~ CaCnk

6. GENERATING FUNCTIONS

In order to derive the generating function for a Sheffer sequence we
consider the vector space of all formal Laurent series over K in the two
variables y and ¢ of the form

(e8] (s 9]
oy, )= > N a, yr.

k=—00 j=—w0
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Recall that two formal Laurent series 6(y, t) and p(y, t} are equal if and only
if the corresponding coefficients of y*¢/ are equal for all integers k and j.
If h(¢) is a delta series in I" we set
0 k
Er0 = N pa h(t)*
k=—oo Ck

which is a well-defined formal Laurent series in the variables y and ¢. Also, if
() is a series in I, then the formal product

I(t) B>

is a well-defined formal Laurent series in y and t, the coefficient of y*+’ being
the coefficient of #/ in (1/c,) I(t) h(¢)*.

We are now in a position to determine a generating function for Sheffer
sequences.

THEOREM 6.1. Let s,(x) be Sheffer for (g(t), f(¢)). Then

! it _ % Mk
ol = e €D

as formal Laurent series in y andt. (Recall that f(t) is the compositional

inverse of f(t).)

Proof. The Expansion Theorem for ¢, ,(¢) reads

b= 3 21D o) oy
and so
SO @)= 3 LrnO1SED 62)
k=m k

for all y in K and all integers m. Now from degree considerations it follows
that the coefficient of ¥ on both sides of (6.2) is a polynomial in y. Since
Eq. (6.2) holds for all y in K we may consider (6.2) as an equality between
formal Laurent series in the two variables y and t. Finally, by comparing
coefficients of y* in (6.2) one sees that (6.1) must hold.

The following characterization of Sheffer sequences is a consequence of
the generating function.
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THEOREM 6.2. Let s5,(x) be Sheffer for (g(1), f(t)). Then

o) BT @ ) 63)

Ck

Proof. Applying (6.2) to x" gives

<8y m(t) | sk(x)>

(Eyum(B) | $4(x)) = (] x")

= <g(f(t))‘l Ey,m(f(t)) | x")

Yn‘ yk re -1 k n
pa C—<g(f(t)) SO x")

- v (/)" f(1)*] X" &
(6n0| ¥ )

Ck

Since this holds for all y in K and all integers m the result follows.

Equation (6.3) is the conjugate representation for s,(x). It is usually the
most convenient method for computing Sheffer sequences provided an
explicit form can be found for f(¢).

7. RECURRENCE FORMULAS

Let ¢ be a continuous linear operator on A. The adjoint u* of u is the
linear operator on I" defined by

:m Cx

(1.1)

where m is chosen so that deg ux* < deg f(¢) for all kK < m. Recall that such
an integer m must exist since ¢ is continuous.

PROPOSITION 7.1. If u is a continuous linear operator on A, then

W (0)] p(x)) = {f(t) lup(x))
Jor all f(t) in I and p(x) in A.

Proof. Since both f(¢) and u*f(t) are continuous linear functionals we
need only check this for p(x) = x" for all n. But then from (7.1) applied to x”
we obtain the desired result.

PROPOSITION 7.2.  The adjoint of a continuous linear operator on A is
continuous.
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Proof. Let u be a continuous linear operator on A, and let £,(¢)» 0 in I'.
We want to show that p*f,(r} - 0. Now since u is continuous there exists an
integer k, such that k < k, implies deg ux* < 0. Also, there exists an integer
n, such that # > n, implies deg f,(¢) > 0. Now let m be given. Then there
exists an integer n,, such that n>n,, implies deg Sa) >
max, ;. {degux'}. Therefore, if we set n, = max{ng, n,  t, then n>n,
1mp11es deg f,(t) > degux* for all k<m. Thus (u*f,(1)]x*)=
{(f(t)|ux*y=0 for all n>n, and for all k <m. In other words, for any
integer m there exists an integer n,, such that n > n,, implies deg u*f,(t) > m
That is, 4*/,(t) > 0 as n > oo and the proposition is proved.

If p,(x) is the associated sequence for f(f), then the umbral shift ¢
associated to f(z) |or p,(x)| is the continuous linear operator on A deﬁned
by

n+1

gfpn('x): Poii(x)

for all integers n. Umbral shifts may be characterized by their adjoints.

THEOREM 7.3. A continuous linear operator 8 on A is the umbral shift
Sor f(t) if and only if its adjoint 8* is a continuous derivation on I for which

0*f(t)=1".
Proof. Suppose 6, is the umbral shift for f(r). Then Proposition 7.2

implies that §* is continuous. Moreover, if p,(x) is the associated sequence
for f(¢) we have

(n+1)e,

(OFF ("] pulx)) = SO Pyy i)

= kcnén,k—l
= (k)" | pulx))-

Therefore 6/(1)* = kf(r)*~'. The continuity of #F and the Expansion
Theorem allow us to conclude that 67 is a derwatlon For the converse,
suppose w is a continuous derlvatlon on A for which awf(t)=1". Then
wf(O* = kf()* " and if p,(x) is associated to f(r) we have
(@f ()F] pa(x)) = kA" | pa(x))
=ke,0,.

= <f(t)" 1 0,-1),,(X)>
= (07 ()] p(x))-

Thus @ = @}. This completes the proof.
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We remark that

O0rg(t) = g'(1)
and

0,t=xD,

where g'(z) is the formal derivative of g(t) with respect to ¢ and where D is
the formal derivative with respect to x.
Next we have the chain rule.

THEOREM 7.4. If 6, and 0, are umbral shifts, then
oF = (6Fg(r)) 6.
Proof.  Since 8} is a derivation we have
OFg(t) = kg(t)* ' 6rg(1)
= (678(1) O g(n)"

and an appeal to continuity completes the proof.
We can now relate two umbral shifts.

THEOREM 7.5. If 6, and 0, are umbral shifts, then
O,=0,0(03f(1)".
Proof. For any p(x) in A

(16, px)) = (671 | p(x))
= (G () (0F1") | p(x))
= ("0, (81(0) ' p(x))
from which the result follows.

From this we obtain our first recurrence formula,

THEOREM 7.6. If p,(x) is associated to S(1), then

D @ =0 0) )

Cn+ 1
where f'(t) is the formal derivative of f(t) with respect to t.

Progf.  This follows from Theorem 7.5 by taking g(¢) = and applying to
D).
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One may deduce from Theorem 7.6 a recurrence formula for the
polynomial part j,(x) of an associated sequence. Since

n+1)c
gtxnz( + ) 'lxn+1
cn+l

we see that if n < 0, then the polynomial part of §,x" is 0. Hence if

px)y= > ax’,

j=-w

then

j=0

=6, p(x).

Thus we have for n > 0

T T ——

Beni®) = e @) pal) (7:2)

But the polynomial part of (f'(¢)) ' p,(x) is easily computed by modifying
the action of the linear operator ¢ on x" so that t*x™ = 0 if k¥ > n. Put another
way, if g(t)="2 o b.t¥, then g(t) x" = (O F_, b t*) x". Thus (7.2) is the
same recurrence formula for associated sequences which appears in UCI.
We would like to derive the analog of Theorem 7.6 for Sheffer sequences.
To this end we have the following formula for the adjoint of an umbral shift.

THEOREM 7.7. Let 6, be an umbral shift. Then
OXh(t) = h(t) 6,— 6,h(t)
for all h(t) in T. ‘

Proof. If g(¢) is in I' and p(x) is in A, then
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(8@ [ (6Fh(1)) p(x)) = (67 h(1)) 8(1) | p(x))
=07 (h(r) g(t)) — h(r) 07g(1) | p(x))
= (g | (h(t) 6, — 6,h(1)) p(x))

from which the conclusion follows.

THEOREM 7.8. Let s,(x) be Sheffer for (g(t), f(t)). Then

(n+1)c, _ &My 1
ey 0= (0= F ) 7o o

Proof. Let p,(x) be the associated sequence for f(¢). Then

(it De, o D,

n+1 n+1

=g (D0, (1)" 8(t) s,(x)- (7.3)

8 (O) Pusi(x)

But
g0, e)=[g7'®)0,—0,g7' (] g(t)+8,
= [0¥g ()] g(t) + 6,
g'(t)
-2/ 19
g0y

and inserting this in (7.3) gives the result.
THEOREM 7.9. Let s,(x) be Sheffer for (g(t), f(1)). If

_(y _EWN SO (o ' ®))\ SO
= (0’ g(f))tf’(t)_<XD g(t))tf’(t)’

then
Ts,(x) = ns,(x).

In other words s,(x) is a formal eigenfunction for T with eigenvalue n.
Conversely, if p(x) in A is a solution to

Tp(x) = np(x)
Jor some n, then p(x)= cs,(x) for some constant c.

Proof. The two forms for T are equivalent since §,t = xD. The fact
that  Ts,(x) = ns,(x) follows from Theorem 7.8 since s,(x)=
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(€a/Cut1) (), 1(x). For the converse, let Tp(x) = np(x). Then there exists
constants a; such that

p(x)= X a;s(x).
j=—w
If n # 0 applying the continuous linear operator 7 to both sides and dividing
by n yields

m

p(x)= Z aj*i“sj(x)

Jj=-

from which we deduce that a; = a,(j/n) for all j and so a;=a,J, ;. In case
n =0 applying T gives
0= > a,js(x)

.
J=—o

from which we deduce that a; = a,d, ;. In either case, p(x) = a,s,(x) which
completes the proof.
The following result is easily proved.

THEOREM 7.10. Let T be a linear operator on A of the form
T = (6, ~ h(t)) (1),

where [(t) is a delta operator with leading coefficient equal to 1 and
deg h(t) = 0. Then a solution to

Ts,(x) = ns,(x)

is given by the nth series in the Sheffer sequence for the pair

<expjh(z) dt, zexpj (=) — t")dt).

8. TRANSFER FORMULAS

The conjugate representation for a Sheffer sequence is most useful when
the delta series f(f) can be explicitly computed. In this section we give a
formula for associated sequences which does not involve f(¢). This formula,
in connection with Theorem 5.3, gives us a powerful formula for computing
Sheffer sequences.

3]

"



"
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THEOREM 8.1 (the Transfer Formula). Ler p,(x) be the associated
sequence for f(t). Then

Pa¥) =1 [0 ()" 5

= f'(t) (&)‘"l x".

Proof.  The two formulas on the right are easily seen to be equivalent.
Now suppose g,(x)=(c,/c_)S"(€)f(t)"""'x~'. We shall check the
conditions of Theorem 5.4. If n + 0, then

(] g,0)) = <t°

cn / —n—1 -1
=0 S0 x>

=C"— SO SO xhy

Cn 1 —nys -1
= S GOy

Cn * —n -1
= e CHAGIIE )

Cr -n -1
= = O 0x )
=0.

In case n =0, we have

| q0<x>>=j—jl SO O x

and it is easy to see that the coefficient of =" in f'(r) f(t) " is equal to 1.
Thus

(%] go(x)) = cy.

and part (i) of Theorem 5.4 is established. For part (ii) we have

10 qn(X)=Cc—:'1f’(t)f(t)‘"x*‘
ZCC" qn~1(x)'

n—1

This completes the proof.
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An alternate form of the Transfer Formula may be derived.

THEOREM 8.2 (the Transfer Formula). Let p,(x) be the associated
sequence for f(t). Then

c
— n 0 t —-n —1
PAX) =5 0./ x
Jor all n+0.
Proof. From Theorems 8.1 and 7.7 we have for n+ 0,

mMz%J@ﬂW“W”

c

—nc

"71 @~

c

"71 [f(O7"6,—6./()"]x"

—Hnc

Cy

6,£(t) "x .

ne

9. UMBRAL COMPOSITION AND TRANSFER OPERATORS

Let p,(x) be associated to f(t). The transfer operator for p,(x) or f(¢) is
the continuous linear operator A, on A defined by

llfx" = pn(x)'
From Eq. (7.1) we obtain
k=m k

and so
A" =1t" 9.1

for all integers n.
We can characterize transfer operators by their adjoints.

THEOREM 9.1. The continuous linear operator A on A is the transfer
operator for f(t) if and only if its adjoint A* is a continuous automorphism of
T for which A*f(t) =1t.

Proof. Suppose A is the transfer operator for f(¢). Then A* is continuous
and Eq. (9.1) together with the Expansion Theorem implies that A* is an



550 STEVEN ROMAN

automorphism of I. For the converse, suppose w is a continuous
automorphism of I" for which wf(t) = t. Then if 4, is the transfer operator for
Pa(x), we have 1%f(1)" = t" = wf(¢)" and an appeal to continuity proves that
w = AF. This completes the proof.

Some properties of transfer operators are contained in the next result.

THEOREM 9.2. (a) Let A,x"— p,(x) be a transfer operator and let
q.(x) be associated to g(t). Then Aq,(x) is associated to A*'g(¢).

(b) Let p,(x) be associated to f(t) and q,(x) be associated to g(t).
Then the continuous linear operator Ap,(x)— q,(x) is a transfer operator and

A*g(t) = f(1).

Suppose p,(x) and g,(x) are sequences in A and g,(x)=37 __ g, ;X"
Then the umbral composition of q,(x) with p,(x) is the sequence

4P = > qn ;i)

j=—c0

Notice that if Ax" — p,(x), then
3a(P(x)) = Aq,,(x).

THEOREM 9.3. Let p,(x) be associated to f(t) and q,(x) be associated to
g(t). Then q,(p(x)) is associated to g(f(?)).

Proof. Let Ax"— p,(x) be the transfer operator for f(t). Then by
Theorem 9.2(a) we see that g,(p(x)) = Ag,(x) is associated to A* 'g(¢) =
g(f(1)). This concludes the proof.

We would like to extend this to Sheffer sequences.

THEOREM 9.4. Let s,(x) be Sheffer for (g(t), f(t)) and let r,(x) be
Sheffer for (h(t), I(t)). Then r,(s(x)) is Sheffer for the pair

(2(0) RF@), I(F(D))).

Proof. Let A,x"— p,x) be the transfer operator for f(¢f) and let
4x" —s,(x). Then y= g~ '(t) A, and

(8O RTO) IO | r(s())) = (g(t) R(F()) IS ()" | ur,(x))
= Ch(SO) IS )" | Asry(x))
= (h(O) 1) [ 7, (x))
=C,0,

This completes the proof.
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Suppose r,(x) and s,(x) are two sequences in A related by

Ay i Si(x).

0 [ s

ra(x) =

The connection-constants problem is to determine the constants a,, ,. In case
s,(x) are Sheffer sequences we can give a solution to this problem.

THEOREM 9.5. Ler s,(x) be Sheffer for (g(t), f(t)) and let r,(x) be
Sheffer for (h(t), [(1)). Suppose

rn(x) = : an.ksk(x)' (92)
k-0
Then the sequence

1,(x)= : a, 1 Si(X).
K

- —x

is the Sheffer sequence for the pair

nFw)
(m 1)

Proof.  Equation (9.2) can be written as r,(x) =1,(s(x)). Now if ¢,(x) is
Sheffer for (X(¢), Y(¢)), then by Theorem 9.4 we have

A1) = g() X(f()), K1) =Y(f(1)).

The result follows by solving these equations for X(r) and Y(1).

10. ExaMpPLES: HERMITE AND LAGUERRE
Let
B (_l)nfl
C(=n—1Y

The constants c,/c,_, are extensions of the lower factorials (n),. In par-
ticular,
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We shall have occasion to use the following list:

c
n k i
cnfk

<n (n)y
<k ()
<k

Since
Ix" =px" !, n+0,
=x1, n=20,

we may connect the operator ¢ with the derivative

tp(x) = Dp(x) + (1| p(x)y x~".

Also,
0, x"=x"+1, n#—1,
=0, n=-—1,
and so
0,p(x) = xp(x) — (t7"] p(x)).
Since

6y.O(l‘) = eyr’
then if n < 0 we obtain
€y o) X" = (x + y)"

and if n > 0 an easy calculation gives

n_ n o g mik=Dt —k
€y o) X" =(x+ p) +,;j1 (~1) T x5

In view of (10.3) the Sheffer identity is, for n < 0,

n

setn= Y (" ) s L0)se.

k=—o0

(=1 * ' alk—n—1).

(10.1)

(10.2)

(10.3)

(10.4)
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For n 2> 0, this identity does not take such a simple form. However, by
taking polynomial parts in (10.4) we obtain

. Lo(ny . -

St 0= Y (1) )i,
iTo \k

which is the Sheffer identity for polynomials appearing in [5].

(1) The Sheffer sequence for the pair (e "'/?,t) is the Hermite
sequence of variance v

HP(x)=e ™" x", (10.5)

Each term in the sequence is called an Hermite series. By expanding e **"?
we see that

=] k
HYx)= Y (—_v) - Cn__ n-2

For n < 0 we obtain

H(nv)(x): Y‘ <__v) (n)Zk n—2k
=\ 2 k!
and for n >0
[n/2] —y k(n)
ey N (Y 2k _n—2k
Ha ) kto(2> K
ee} _ k ' _ _ ]
N 2 (_v) (_1)"+ln.(2k 'n 1)'x"*2".
k=[n/2]1+1 2 k

It follows from (10.5) that for n > 0 the polynomials H”(x) are the Hermite
polynomials.
The generating function for H'"(x) is

[e o]
vt2/2pxt .\ k
e’ EY =

From Theorem 5.6 we obtain

HYP(x) = = HYY | (x)
n—1
10.6
=nHY (x), n+0, (10.6)

:H(:))l(x), n=0.



554 STEVEN ROMAN

Next we consider the recurrence formula. From Theorem 7.8 we obtain
(1 =6, ) Hyl(x)= (6, + vt) H.(x).
In view of (10.2),
(X =6, ) H})(x) = xH [ (x) + vtH ) (x) = (7' | H, (x)).

From (10.6) we get

XHP(x) = (1= 6, 1) Hy),(x) + ——"—vH}? ((x) = (¢t 7' [ H}”(x)),
Crna
where
HHY () = __V)WWZ Ot for w1, modd,
" 2 ((n+ 1)/2)
=1 for n=-1,
=0 otherwise.

By taking polynomial parts of the above recurrence, and noticing that
XHP (x)=xHP (x) + (¢t~ | H(x)) we obtain

Xﬁ(nv)(x) - ﬁ;vl 1(x) + an(‘) 1(x) =

which is the classical three term recurrence for Hermite polynomials
[3,p. 179].
From Theorem 7.9 we have

nH (x) = (xD + vt*) HY (x).
Combining this with (10.1) gives the second order t-operator equation
VEEH Y (x) + xtH (" (x) — nH P (x) = (t| H . (x)),

where

<tlH‘”’(x)>—(_T) (n/2)' for n>0, neven,

otherwise.

We may use (10.1) to convert these t-operator equations into differential
equations. As an example, if n < 0, then tH'(x) = DH'”(x) and so

vD’H(x) + xDH(x) — nH"(x) = 0.
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(2) The Sheffer sequence for the pair ((1 —¢)=*~',¢/(t — 1)) is the
Laguerre sequence L™ (x) of order a. Each term L‘®(x) is called a Laguerre
series. In case a=1, the sequence L "(x)=L,(x) is the associated
sequence for ¢/(f — 1). By the Transfer Formula

L()=—(—1y"'x
:i (n—l) ¢, ()

k=0 k Cn_k

and so

L2(x)=(1-1)"""L,(x)

=D -pn*rx"
2 () e

Thus for n < 0,

L) = i(” “) o

_— (nza>n!(k—n-1)!x"”‘.

k=n+1

The generating function for L (*(x) is

) (a)
(1 —¢)=a—t prt=n _ i L' (x) .
k=—oc  Ck

Theorem 5.6 implies that

@y - (@
t—lL" x)= p ——L*,(x) (10.7)

n—1

or

c ¢
tL},""(x)———c L@ (x) + . L@ (x)=

n—1 n—1

Using (10.1) we obtain

DL™(x) = —“= DL, (x) + " L, (x)

n—1 n—l

= c, + Co | X,
n n—1
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where of course (j-): 0 if j <0. We remark that the equation for Laguerre
polynomials obtained by taking polynomial parts of the above appears in |4,
Eq. (2), p. 202] (with a slight modification).

Theorem 7.9 gives

ALY () = (0,1 ~ 1) = (a + 1)] (L),

Employing (10.2) we obtain, after some rearrangement, the second order -
operator equation

=0 =@+ Dt —m) L) = (n + a + 1),

where (n+a+1),=0if n <0,

As in the Hermite case we may use (10.1) to obtain second order
differential equations.

As an example of umbral techniques Theorem 9.4 tells us that the umbral
composition L{®(L®(x)) is Sheffer for ((L —1)*72,1). Hence

L (@)= (1 =2

-\ (a_ﬂ>(~1)" En_ ynk,

1:0 k ank

For n < 0 we obtain
oC —
G IE S G TN
iSo \ K
and for n >0

n
~

L@ )= () e

5
—
k=0

\02 a_'B> _1 n+l.
+ X (e
In case a = we have

LWL (x)) = x"

for all integers n. Thus the Laguerre sequence is self-inverse under umbral
composition.
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11. EXAMPLES: GEGENBAUER

One may recall from UCI that the Gegenbauer polynomials arose from
the case

1
Cc, =
()
n
for n > 0, where —1 is not a nonnegative integer. Thus

c,
o, A+n—1°"

—Hn

We now require that 4 not be an integer. Then we set

c,= R n>0,

In this case

= 0
¢,y A+n—1" n# o
Ti-1 "=
Therefore
. 1
tp(x)=—(A +xD) "' Dp(x) + T (] p(x)y x ! (11.1)

for all p(x) in v, which is readily verified by taking p(x) = x".
The Gegenbauer sequence G ,(x) is the Sheffer sequence for

o) = (Tzﬁ) 1) =

Each term is called a Gegenbauer series. A simple computation yields

-2 —1

- -2
Fo=1
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and

g(f()= (1 + )
Thus the conjugate representation (Theorem 6.2) gives

G = 3 Era i oo

k= —o0 k

S A+ 22— .
=3 (YT o g
j=o J n—2j

Evaluating c,/c, ., gives for n < 0,

G.(x) = w DY (n+ 22—

1),; L
- - —2x)"
=0 JMA+n—1) (=2x)

and for n > 0,

—A ><—/1+2j-n)

G,x)= > —1 ot
Jj=0
()
(—l+2j*”>
+ N _{1 T (20"
TR (g 2)) ( " ><_n+2j)

The generating function for G,(x)is

(1 + [2)—,1 EX(-200 402y _ i Gk(x) tk.
k=—o  Ck

Our first recurrence comes from Theorem 5.6. Since S G, (x)=
(c./ch_1) G, _,(x) we deduce that

VI=2 G x)==""1G, ,(x)+ G, x) (11.2)

cn~1

On the other hand
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VI— 2 Gx) = (1+/T= 1) G,(x) — G, (x)
S (L T= ) (1) Gy 1(¥) = G (%)

Cy

== 4G, (%)~ G0,

n+1

Equating the two expressions for /1 — £’ G,(x) gives the recurrence

C” th+l(x)+ Ccn [anl(x)+20n(x):0'
n+l n—1
Since
g'@)
=== A (¢
g(t) o 1)
and
S )
=1 — 1.
S(@)
Theorem 9.7 gives
nG (x)=60,t\/1—1* G, (x)+ ;CL MG, ().
n-1
Using (11.2) we obtain
“ 6,06, () +6,1G,(x) + ~"= MG, (x) ~ nG,(x) = 0.
n—1 n—1

Employing (11.1) and the fact that 6, = xD we obtain

C"

xDG ,(x) = ——— DG, ,(x) —nG,(x)

n—1

:/lni—in_:l)—l [((nj)ﬁ)/(n_jl”xl

with the usual proviso that (f',») =0if j < 0 orjis not an integer. Again taking
polynomial parts given a familiar recurrence for the Gegenbauer polynomials
(|4, (9), p. 279] with some modification).
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12. ExAMPLES: CHEBYSHEV
We mention only briefly the case

¢, = (=1)"

for all integers n. One may recall from UCI that the Chebyshev polynomials
were obtained from this choice of ¢, for n > 0. Then

and so

and
6, = —xDx.

The Chebyshev sequence of the first kind T, (x) is the Sheffer sequence for

1 Vi—-t2—1
EN)=——s, f(O)="—.
V1-—1 !
One easily obtains
- — 2t
fO=137
and
. 14177
sW) =1
The generating function for T,(x) is
1 X(=2t/(1+12) %2 k k
o E = X )T
=-0w

The Chebyshev sequence of the second kind U,(x) is Sheffer for

2-2/1-7 R
g ="—2V 1L fo=H=rml
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Since g(f(t)) =1 + ¢* the generating function is

1
EXCwasm — N (DR UL ()t
1+t2 k=—c0 ( ) k( )

13. EXAMPLES: JACOBI

We shall not pursue a study of the Jacobi series at this time. Suffice it to
say that by setting

4"(a + n)
:________”___, >Oﬂ
Cn (a+ 8+ 2n),, "

4"
@B,

(a)_,

the Sheffer sequence for

_ 2 trath Cl4r—y/142
o=(oms) o 0=

behaves in a Jacobi-like manner.

14. ExAaMPLES: THE ¢-CASE

Let us take

_(0-g)(—-g)---(1-¢g")
“= (1-q)" ’ ">0

D e —g)

= — T n < 0.
(1-g)1-g*)---(1—-¢q7"")
Then one readily verifies that
1 — n
Cn_ _ q ’ n0,
Crn-i l_q
= 1’ n=20
Therefore
1_ n
x" = 1 x" 1 n+0,
1—¢q (14.1)
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The g-derivative D, is the continuous linear operator on satisfying

n_1=q" .
D x" = - x"!
for all integers n. Thus
n _ x n
D x" =% (gx)
X —gx
and so
plx) — p(gx)
D =
o P(x) X —gx

In view of (14.1) we have
tp(x) =D, p(x) + (" | p(x))y x~".
Also,

it DU —-q) .,
0,x" = =g X"

The g-binomial coefficient (%), is defined in the literature for n, k > 0 as
k),
kl, ceni

Since the right side is defined for all integers n and k the g-binomial coef-
ficient is automatically extended. The evaluation series is

X [n
sy,O(t): L (k) yktk.
q

k=0
The Sheffer sequence for (g, o(¢), t) will be denoted by s,(x) = [x], ,. Thus
[x]y.n = 6y.0(t)7l xn'

In UCI we found that

-1 _ < (l_q)k k)-— k Cn o=k
£,0() ' = Z;O =) (=g 4(2 (—=») Cnka .

and so we obtain k
IS . k| A LSS

Cnvk

50 (1—q) - (1—¢"



THE UMBRAL CALCULUS HI 563

For n < 0, we get

(=) 0=g"™) s

RS
% = (=g - (1—4¢"

and for n >0,

10.
11.
12.

13.

Xya=x—p)x—qy) - (x—q""'p)

© n
+ ¥ (-9 [] (-4)
k=n+1 J=k+1
k—n—1
X II (1 _ql) qn(Zk—nfl)/Zykxn—k'

i=1
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